Job-shop scheduling problem with machines at different speeds (JSMS)
The traditional scheduling models consider performance indicators such as processing time, cost and quality as optimization objectives. However, most of them do not take into account energy consumption. We focus our attention in a job-shop scheduling problem where machines can work with different energy consumptions. It represents an extension of the classical job-shop scheduling problem, where each operation has to be executed by one machine and this machine can work at different voltage.
Formally the job-shop scheduling problem with machines at different speeds (JSMS) can be defined as follows. We are given a set of n jobs {J1 , . . . , Jn }, a set of m resources or machines {R1 , . . . , Rm }. Each job Ji consists of a sequence of vi tasks (θi1 , . . . , θivi ). Each task θil has a single machine requirement Rθil and a start time stθil to be determined. Each machine can work with different speeds, the duration and energy combination is presented by a tuple {pθil ,eθil } A feasible schedule is a complete assignment of starting times tasks that satisfies
the following constraints:
Research Group Artificial Intelligence, Planning & Scheduling
Main areas:
nbJobs = 3; nbMchs = 3; nbOp = 5; Ops = [ [<1,2>, <2,1>, <3,0>, <4,2>, <5,0>], [<6,0>, <7,1>, <8,2>, <9,1>, <10,2>], [<11,0>, <12,2>, <13,1>, <14,0>, <15,2>] ]; Modes = { <1,14,14>,<1,16,10>,<1,19,7>, <2,4,6>,<2,5,5>,<2,6,4>, <3,13,15>,<3,14,11>,<3,15,10>, <4,3,5>,<4,4,4>,<4,5,3>, <5,1,4>,<5,2,3>,<5,3,2>, <6,16,14>,<6,17,12>,<6,18,8>, <7,5,9>,<7,10,7>,<7,12,6>, <8,2,4>,<8,3,3>,<8,4,2>, <9,1,3>,<9,1,2>,<9,2,1>, <10,1,3>,<10,1,2>,<10,2,1>, <11,8,9>,<11,12,8>,<11,17,6>, <12,4,10>,<12,7,7>,<12,13,5>, <13,1,4>,<13,1,3>,<13,2,2>, <14,3,10>,<14,5,9>,<14,9,7>, <15,3,6>,<15,5,4>,<15,6,3>, };
nbJobs = 3; nbMchs = 3; nbOp = 7; Ops = [ [<1,1>, <2,0>, <3,1>, <4,0>, <5,2>, <6,0>, <7,2>], [<8,0>, <9,2>, <10,1>, <11,0>, <12,1>, <13,2>, <14,1>], [<15,0>, <16,1>, <17,2>, <18,0>, <19,2>, <20,0>, <21,1>] ]; Modes = { <1,24,74>,<1,40,65>,<1,78,47>, <2,51,125>,<2,60,91>,<2,113,82>, <3,114,148>,<3,145,123>,<3,199,94>, <4,60,110>,<4,102,101>,<4,111,92>, <5,12,42>,<5,21,33>,<5,30,24>, <6,75,124>,<6,108,96>,<6,154,87>, <7,55,98>,<7,109,71>,<7,150,60>, <8,117,136>,<8,163,117>,<8,175,78>, <9,26,38>,<9,36,29>,<9,53,20>, <10,15,47>,<10,26,38>,<10,36,29>, <11,42,76>,<11,52,55>,<11,78,46>, <12,26,48>,<12,39,34>,<12,61,23>, <13,29,44>,<13,46,35>,<13,57,26>, <14,37,77>,<14,46,68>,<14,69,59>, <15,65,99>,<15,122,67>,<15,136,54>, <16,49,96>,<16,58,74>,<16,75,62>, <17,1,20>,<17,1,11>,<17,2,2>, <18,35,68>,<18,50,59>,<18,96,44>, <19,129,116>,<19,158,81>,<19,167,67>, <20,66,107>,<20,105,94>,<20,155,85>, <21,81,143>,<21,90,106>,<21,159,84>, };
nbJobs = 3; nbMchs = 7; nbOp = 10; Ops = [ [<1,6>, <2,2>, <3,1>, <4,5>, <5,6>, <6,3>, <7,4>, <8,2>, <9,1>, <10,0>], [<11,4>, <12,1>, <13,4>, <14,0>, <15,6>, <16,4>, <17,1>, <18,5>, <19,6>, <20,1>], [<21,3>, <22,6>, <23,1>, <24,4>, <25,3>, <26,1>, <27,2>, <28,1>, <29,3>, <30,4>] ]; Modes = { <1,1,27>,<1,1,17>,<1,8,7>, <2,1,31>,<2,2,21>,<2,12,11>, <3,1,34>,<3,8,23>,<3,18,13>, <4,1,24>,<4,1,14>,<4,7,4>, <5,35,77>,<5,65,67>,<5,103,48>, <6,65,52>,<6,75,42>,<6,85,32>, <7,4,29>,<7,14,19>,<7,24,9>, <8,23,149>,<8,46,102>,<8,87,84>, <9,1,22>,<9,1,12>,<9,3,2>, <10,48,62>,<10,82,52>,<10,92,37>, <11,49,94>,<11,59,71>,<11,88,61>, <12,46,151>,<12,87,110>,<12,109,94>, <13,41,72>,<13,69,62>,<13,133,48>, <14,62,165>,<14,123,116>,<14,229,89>, <15,56,168>,<15,92,113>,<15,147,88>, <16,174,182>,<16,190,130>,<16,200,96>, <17,1,25>,<17,2,15>,<17,12,5>, <18,1,27>,<18,1,17>,<18,7,7>, <19,1,32>,<19,10,22>,<19,20,12>, <20,20,61>,<20,32,44>,<20,49,33>, <21,80,70>,<21,90,60>,<21,112,50>, <22,18,49>,<22,29,39>,<22,39,29>, <23,97,126>,<23,193,88>,<23,203,72>, <24,1,23>,<24,1,13>,<24,6,3>, <25,69,126>,<25,117,98>,<25,153,83>, <26,42,114>,<26,54,104>,<26,90,78>, <27,84,96>,<27,118,86>,<27,148,65>, <28,94,144>,<28,170,134>,<28,228,91>, <29,17,65>,<29,27,44>,<29,37,34>, <30,176,127>,<30,190,116>,<30,201,79>, };
3_5_10 | |||||||||
CP Optimizer | Genetic | Genetic*+LS | |||||||
λ | Mk | En | F | Mk | En | F | Mk | En | F |
0 | 71.4 | 84.4 | 0.553762 | 65.8 | 84.4 | 0.553762 | 65.8 | 84.4 | 0.553762 |
0.1 | 65.2 | 84.5 | 0.556581 | 65.2 | 84.5 | 0.556581 | 65.2 | 84.5 | 0.556581 |
0.2 | 64.4 | 84.7 | 0.558703 | 64.4 | 84.7 | 0.558703 | 64.4 | 84.7 | 0.558703 |
0.3 | 63.2 | 85.2 | 0.559422 | 63.2 | 85.2 | 0.559422 | 63.2 | 85.2 | 0.559422 |
0.4 | 59.7 | 88.1 | 0.557816 | 59.7 | 88.1 | 0.557816 | 59.7 | 88.1 | 0.557816 |
0.5 | 53.9 | 94.3 | 0.547187 | 54.2 | 93.9 | 0.547270 | 54 | 94.2 | 0.547239 |
0.6 | 48.4 | 104.2 | 0.529935 | 48.9 | 103.2 | 0.529687 | 49 | 103 | 0.529761 |
0.7 | 45.3 | 111.9 | 0.500419 | 45 | 112.7 | 0.500130 | 44.8 | 113.3 | 0.500084 |
0.8 | 42.2 | 123.4 | 0.461368 | 42.2 | 123.5 | 0.461509 | 42.2 | 123.4 | 0.461368 |
0.9 | 41 | 133.2 | 0.414361 | 41 | 133.7 | 0.414712 | 41 | 133.2 | 0.414361 |
1 | 41 | 143.1 | 0.363050 | 41 | 145.3 | 0.363050 | 41 | 152 | 0.363050 |
7_10_100 | |||||||||
CP Optimizer | Genetic | Genetic*+LS | |||||||
λ | Mk | En | F | Mk | En | F | Mk | En | F |
0 | 1088.4 | 1571.4 | 0.533616 | 1006.3 | 1571.4 | 0.533616 | 1006.3 | 1571.4 | 0.533616 |
0.1 | 999.3 | 1572.6 | 0.540932 | 999.3 | 1572.6 | 0.540931 | 999.3 | 1572.6 | 0.540931 |
0.2 | 987.2 | 1576.5 | 0.547508 | 987.2 | 1576.5 | 0.547509 | 987.2 | 1576.5 | 0.547509 |
0.3 | 922.2 | 1613.3 | 0.550868 | 926.9 | 1610 | 0.551018 | 922.2 | 1613.3 | 0.550868 |
0.4 | 885.9 | 1649.2 | 0.550650 | 891 | 1642.9 | 0.550638 | 888 | 1646 | 0.550556 |
0.5 | 838.8 | 1716 | 0.545249 | 847.5 | 1704.8 | 0.545938 | 842.1 | 1711.3 | 0.545187 |
0.6 | 779.1 | 1859.3 | 0.535095 | 782.4 | 1845.7 | 0.535361 | 774.4 | 1861.1 | 0.534304 |
0.7 | 708.5 | 2068.4 | 0.511331 | 703.9 | 2099.5 | 0.512783 | 704 | 2085.1 | 0.511140 |
0.8 | 651.8 | 2346 | 0.475184 | 642.4 | 2418.9 | 0.475810 | 644.1 | 2394.3 | 0.475081 |
0.9 | 626 | 2560.7 | 0.428228 | 626 | 2573.3 | 0.428603 | 626 | 2560.7 | 0.428228 |
1 | 625.9 | 2664.1 | 0.378956 | 625.9 | 2773.4 | 0.378956 | 625.9 | 2935.1 | 0.378956 |
Watson50 | |||||||||
CP Optimizer | Genetic | Genetic*+LS | |||||||
λ | Mk | En | F | Mk | En | F | Mk | En | F |
0 | 7648.9 | 53631.5 | 0.534084 | 8359 | 61290.4 | 0.610346 | 7267.5 | 53631.5 | 0.534084 |
0.1 | 7322.7 | 53669.5 | 0.558776 | 6985.1 | 63122.2 | 0.639945 | 7036.4 | 53635.2 | 0.555427 |
0.2 | 7258.6 | 53875 | 0.583375 | 6496 | 64934.4 | 0.655306 | 6979.8 | 53698.9 | 0.576029 |
0.3 | 7192.5 | 54094.1 | 0.606205 | 6121.4 | 67834.6 | 0.667899 | 6945.4 | 53822.3 | 0.596453 |
0.4 | 7172 | 54257.6 | 0.628810 | 5840.1 | 71034 | 0.672533 | 6824.5 | 54351.4 | 0.614622 |
0.5 | 7121 | 54467.3 | 0.649284 | 5657.8 | 73653.8 | 0.667159 | 6680.6 | 55472.4 | 0.630886 |
0.6 | 6552.1 | 62253.7 | 0.665704 | 5559.8 | 75243.6 | 0.653968 | 5305.1 | 70358 | 0.618196 |
0.7 | 6039.1 | 71014.7 | 0.661105 | 5456.9 | 76643.2 | 0.634583 | 4970.9 | 75679.6 | 0.595589 |
0.8 | 5947.3 | 71489.3 | 0.647691 | 5466.9 | 76972.8 | 0.617737 | 4896.8 | 77262.9 | 0.569877 |
0.9 | 5876.3 | 70699.2 | 0.632014 | 5420.4 | 77869.3 | 0.595589 | 4862.8 | 78307.4 | 0.542734 |
1 | 5008.3 | 81527.7 | 0.531812 | 5396.8 | 78976.6 | 0.573094 | 4265.7 | 98395.6 | 0.452947 |
Watson100 | |||||||||
CP Optimizer | Genetic | Genetic*+LS | |||||||
λ | Mk | En | F | Mk | En | F | Mk | En | F |
0 | 12671.2 | 105478.1 | 0.530618 | 13763.5 | 126772.1 | 0.637760 | 12339.4 | 105478.1 | 0.530617 |
0.1 | 12378.1 | 105513.8 | 0.561048 | 11700.8 | 128923.7 | 0.662490 | 12085.9 | 105483.1 | 0.558938 |
0.2 | 12297.4 | 105710.8 | 0.591010 | 11048 | 132690.7 | 0.682760 | 12074.3 | 105490.1 | 0.587106 |
0.3 | 12408 | 105654 | 0.622653 | 10347.5 | 139304 | 0.699511 | 11949.3 | 105921.3 | 0.614317 |
0.4 | 12376.4 | 105634.3 | 0.652105 | 9909.1 | 144731.7 | 0.703700 | 11828.6 | 106739.4 | 0.640697 |
0.5 | 12097.2 | 110089.6 | 0.684038 | 9769.5 | 147040.8 | 0.698713 | 11573.3 | 109046.2 | 0.663841 |
0.6 | 10296.9 | 140905.5 | 0.699602 | 9638.4 | 149638.5 | 0.690415 | 8761.3 | 145892.3 | 0.647497 |
0.7 | 9835.1 | 150495.9 | 0.690528 | 9558.8 | 151011.4 | 0.678329 | 8560.4 | 150040.1 | 0.629834 |
0.8 | 9785.8 | 150468.8 | 0.678396 | 9524.3 | 151835.1 | 0.665705 | 8406.5 | 153414.3 | 0.607110 |
0.9 | 9813.2 | 149937.6 | 0.669925 | 9484.8 | 153036.8 | 0.651611 | 8415.8 | 154301.4 | 0.587494 |
1 | 9434.5 | 152047.9 | 0.635030 | 9511 | 153336.4 | 0.640230 | 7318.7 | 196574.7 | 0.492683 |
Watson200 | |||||||||
CP Optimizer | Genetic | Genetic*+LS | |||||||
λ | Mk | En | F | Mk | En | F | Mk | En | F |
0 | 22399.6 | 211041.5 | 0.530985 | 23189.1 | 271449.7 | 0.682978 | 21982.7 | 211040.1 | 0.530981 |
0.1 | 21776 | 307619.8 | 0.785615 | 20317.2 | 269756.1 | 0.693916 | 21725.5 | 211040.1 | 0.566732 |
0.2 | 21776 | 307619.8 | 0.797274 | 19194.2 | 279323.8 | 0.719238 | 21697.7 | 211073.5 | 0.602325 |
0.3 | 21776 | 307619.8 | 0.808934 | 18004.6 | 290852.6 | 0.733131 | 21674.5 | 211331.5 | 0.638119 |
0.4 | 22701.1 | 279768.9 | 0.793322 | 17684.3 | 294861.1 | 0.734408 | 21576.5 | 211657.1 | 0.672474 |
0.5 | 22428.6 | 231369 | 0.749543 | 17516.5 | 297864.2 | 0.732885 | 21123.5 | 217626.6 | 0.705700 |
0.6 | 18215.4 | 282412.4 | 0.731213 | 17378.2 | 299940.4 | 0.728279 | 15590.1 | 297314.6 | 0.681767 |
0.7 | 17439.5 | 300096.2 | 0.725809 | 17341.5 | 301425.6 | 0.723949 | 15311.9 | 304140.6 | 0.667889 |
0.8 | 17379 | 300292.6 | 0.719746 | 17350 | 301864.7 | 0.719531 | 15277.5 | 305966.2 | 0.653797 |
0.9 | 17253.8 | 300856.2 | 0.710794 | 17323.3 | 302255.9 | 0.713660 | 15191.8 | 309181.4 | 0.636952 |
1 | 17074.7 | 299562.5 | 0.698323 | 17295.5 | 302979 | 0.707326 | 13165.5 | 397436.9 | 0.538403 |
Email:
jescamilla (_at_) dsic DOT upv DOT es
Email:
fbarber (_at_) dsic DOT upv DOT es
Email:
msalido (_at_) dsic DOT upv DOT es
*These values are the maximum makespan attained in a genetic algorithm execution when λ value is equal to 0. It is used to normalized the objective function. More information in References section in paper "A Metaheuristic Technique for Energy-Efficiency in Job-Shop Scheduling"